Blog Layout

Seal Terminology 101: Getting Started in the World of Seals

Doug • October 3, 2022

While the average person can probably recognize a rubber O-Ring , knowledge of advanced sealing devices remains a largely obscure field of knowledge. Eclipse is here to be the subject matter experts and guide you to the best sealing solution, but being familiar with some basic seal terminology will aid us in the process.

The ability to effectively communicate the operating conditions and goals of the sealing system will expedite the design and quoting process and ensure that we choose the optimal solution for you.

Below we’ll discuss some common terms and industry nomenclature to get you started in the world of seals.

O-Rings, Gaskets, Spring Seals, Cap Seals – What do I Call These Things?

Sometimes just finding what to call a particular seal can be a challenge in and of itself. We’ve had customers contact us looking for a new “O-Ring” or “gasket” when they actually have a PTFE Canted Coil Spring Energized Seal in front of them.

In many cases, terms like “O-Ring” are used to generically describe any kind of seal regardless of type or functionality.

Other customers who primarily work with metallic or ceramic sealing elements like piston rings or mechanical face seals, might refer to any other type of seal as a “soft seal,” even if it’s made from a highly filled PTFE. Another customer might request an “oil seal” even though their application is a dry-running rotary vacuum arrangement.

Eclipse understands just describing the seal needed can be a major barrier. That’s why we designed our standard part number catalogs to be graphically based to help with product recognition and description.

While the catalogs are meant to demonstrate Eclipse’s capabilities and standard part number schemes, they’re also great tools for communicating seal types and configurations.

Grooves and Glands

The physical space for a seal to occupy is often simply called a groove but can also be referred to as a gland. In most cases, it’s a rectangular groove cut into the hardware whether it be on a piston, in the housing for a rod, or in the face of two mating surfaces.

In contrast to O-Rings and elastomeric seals, PTFE and polymer seals are critically dependent on hardware conditions for proper functionality. Configuring the gland for proper seal installation and preparing the mating surfaces with the necessary finishes and hardness is necessary for successful sealing.

Diameters 

OD – Outside Diameter

ID – Inside Diameter

Almost all the polymer seals we manufacture are round parts machined on CNC lathes. Therefore, the diameters are key dimensions for both the seal and mating hardware.

Diameter dimensions are proceeded by the symbol “ Ø ” on manufacturing prints. Many seal prints feature cross-sectional views where the diameters are not shown completely. This leads to some confusion about whether the radius or diameter is being called out.

A radius would be proceeded by the symbol “ R ” and would involve finding the theoretical center of a part to measure/inspect. Therefore, diameters are almost exclusively used to describe the external dimensions of parts.

With that being said, the diameters of thin, flexible parts can be very challenging to measure at times. Tools such as a Visual Measurement Machine, which provides a non-contact method that also takes into account the inevitable part out-of-roundness, can be invaluable for accurate inspection.

The diameters of PTFE and polymer seals are also typically the most difficult dimensions to tightly control while machining, especially at larger sizes. This is due to the inherent instability of polymer materials. Fortunately, most seals are not critically dependent on diameter precision for functionality.

Radial Cross-Section

The radial cross-section of a seal sometimes referred to as the “wall” is equal to the OD minus the ID, divided by two. The radial cross-section is often the most critical dimension for the functionality of a seal. This dimension will determine the compression or squeeze on a spring or O-Ring energizer which is responsible for providing the contact and sealing force of the seal.

Too little or too much compression or interference can cause a number of problems from leakage to excessive wear. Thankfully, the cross-section dimension is typically easy to hold within tight machine tolerances and easy to inspect.

Seal Width or Height

The axial length of the seal can be referred to as either the seal width or seal height. Eclipse typically uses width rather than height because this dimension is most often checked with calipers while holding the seal in your hands, rather than with a height gauge on a calibrated flat surface.

The seal width will always be dimensioned to have clearance in the hardware gland, but how much clearance can be important. In reciprocating applications, a seal too undersized for the groove can shuttle back and forth in the gland causing accelerated wear.

This also creates an opportunity for the seal to become cocked or misaligned in the groove which can lead to premature failure.

Rod and Piston Seals

The majority of the seals Eclipse produces fall under the category of a rod or piston seal. A piston seal typically seals the inside diameter of a cylinder or bore, meaning the outside diameter of the seal is the sealing surface. A rod seal is typically sealing on the outside diameter of a shaft, thus the inside diameter of the seal is the sealing surface.

While this is straightforward most of the time, things are not always as clear. Many HPLC (High-performance liquid chromatography) and other lab testing equipment applications use ceramic shafts that act as reciprocating pistons. So, while they may need a seal for a piston, the product will in reality be a rod seal.

To avoid confusion, we usually differentiate rod and piston seals based on the dynamic sealing surface. If the OD of the seal is dynamic, it’s a piston seal. If the ID of a seal is the dynamic surface, it’s a rod seal.

Some seal types, like most cantilever spring seals, are symmetrical in design and can be used for either application. Other seals, like Canted Coil Spring seals, have different geometries based on whether the OD or ID is the primary sealing surface.

This is to provide optimum loading and wear characteristics to extend seal life and enhance sealability.

E-Gap

E-Gap is short for extrusion gap and is defined as the clearance between the hardware components. In a piston configuration, this would be the clearance between the piston and bore. In a rod configuration, this is the clearance between the rod and the housing it’s passing through.

In short, it is the physical gap that needs to be sealed in the hardware. It is one of the primary factors in the pressure handling capability of a seal. Seals improperly designed for a particular extrusion gap will cold-flow or extrude through this opening at high pressures.

If you’re wondering how much pressure a seal can hold, the E-Gap will likely be our first indicator.

PV – Pressure Velocity

The PV of a sealing system is the pressure multiplied by the surface speed of the dynamic seal interface.

PV is used as a quick gauge of the plausibility of the success of a sealing system in a given application. The exact value itself is not of tremendous importance, but it provides a relative idea of the stress and projected wear life of a seal.

Trade Names and Acronyms Galore

Polytetrafluoroethylene doesn’t exactly roll off the tongue. How about Polyether Ether Ketone? Anyone need some Ultra High Molecular Weight Polyethylene?

Many of the seal materials Eclipses uses on a daily basis are commonly known and referred to simply by their acronyms (PTFE, PEEK, UHMW) rather than the full chemical names.

Other seal materials are commonly known by trade or brand names, not unlike consumer products like soft drinks or generic prescription drugs. Fluorocarbon (FKM) O-rings for example, are usually called trade name Viton® even if a generic compound is being used.

Teflon®, the first and most common trade name for PTFE is a household term thanks to non-stick frying pans. Yes, this is the same PTFE used to make seals and the low friction and high heat capabilities are a benefit in many sealing applications.

Blended PTFE seal materials can get even more convoluted with multiple fillers having trade or generic names which may or may not be used. Most seal companies also assign their own material codes even if the blend of PTFE is common throughout the industry.

Don’t worry if you’re not a chemist, we’re here to decipher the alphabet soup and provide the best material for your application.

 

By Doug Montgomery February 13, 2025
Learn how Eclipse Seal’s custom spring energized ball seats with angled grooves improve performance
By Doug Montgomery January 17, 2025
Eclipse deals regularly with challenging sealing applications from all industries. High pressures and speeds create unique sets of conditions where seal design and material properties are pushed to the limit. While reciprocating applications can certainly test seals to the edge of capability, often times rotary applications can present the greatest challenge to seal integrity and wear life. Unlike reciprocating configurations where the seal is acting on a different part of the shaft or bore throughout it’s operating range, rotary seals must operate on the same sealing area continuously. This makes things like heat rejection much more difficult, especially in unlubricated or dry running applications. Extreme localized heating can have negative affect on both seal and hardware life. Rotary applications also pose sealing difficulties due to the simple fact that surface speeds can be much higher than in reciprocating systems. A simple electric motor can operate at very high rpm, while long stroke, high speed reciprocating machinery is a major piece of equipment that is far less common (though Eclipse also has sealing solutions in a number of these situations). A customer approached Eclipse with an application that was beyond the scope and capability of any standard, off-the-shelf rotary seal. This sealing system would require a combination of both wear resistance in high-speed rotary, as well as excellent leakage control and sealability. Two factors that, more often than not, work in opposition to each other. The Customer Issue The customer was developing a test system that required an electric motor shaft passed through the wall of a large vacuum chamber. The testing apparatus needed a sizable motor to meet the speed and torque requirements. Adapting the motor to operate inside the chamber would not be practical due to contamination and motor cooling concerns. Therefore, the motor would have to be placed outside the chamber and a driveshaft would have to go through the chamber wall. Which, of course, would need a seal. Operating Conditions:
 Rotary Shaft Seal
 Shaft Diameter: 2.5”
 RPM: 7,500 RPM - unlubricated
 Pressure: Vacuum internal side / 1 ATM external side Temperature: 40° - 90°F The customer knew any kind of off-the-shelf rotary seal with a rubber element would not last any amount of time in the combination of speed and a dry running condition. They also knew a single lip PTFE seal would likely not meet their leakage requirements. Therefore, they turned Eclipse for a custom sealing solution.
By Doug Montgomery November 25, 2024
Eclipse has engineered sealing solutions for applications all over the planet and in a plethora of environments. From the bottom of the ocean to orbiting the earth, Eclipse is challenged by the unique conditions in each application. Whether it be extreme temperature and pressure or severely caustic or abrasive media, Eclipse has a solution for most every sealing problem. One distinct environment presents a particularly challenging set of circumstances for seal design – high radiation. Eclipse’s primary seal material choice for many applications is PTFE and PTFE blends. With all the wonderful attributes PTFE possesses as a seal material, radiation resistance is not one. In high radiation environments PTFE’s properties can degrade to essentially rule it out as a suitable material. The options for effective sealing materials that are also radiation resistant becomes very limited. The seal designer is therefore confronted with creating a seal that is expected to perform in every way a typical PTFE seal operates, out of materials that are not as favorable to sealing. This is where Eclipse’s engineering experience and expertise in seal design come to the forefront. The Client's Issue Eclipse was approached by a customer that was looking for a seal solution for a sensor used in a nuclear application. It would be operating in an environment with both high temperature and high Gamma radiation. Operating Conditions:
 Reciprocating Rod Seal
 Rod Diameter: Ø1.000
 Stroke: 1.5”
Cycle Rate: 2-4 cycles per minute
 Media: Air, Salt Water Mist
 Pressure: 100 PSI
 Temperature: 70° to 450°F
 Gamma Radiation Exposure: 10^6 rads
By Doug Montgomery November 14, 2024
Technological advancements in the area of robotics have led to more and more life-like creations existing only in works of science fiction a few decades ago. Development in autonomous logic processing and sensing allows bipedal robots to walk over uneven ground, up and down stairs, open doors and carry loads. Fast response to dynamic and unpredictable real-world environments is critical for the future use of robots in true-life service and practical employment in the years to come. While software and sensor development remain the primary focus of most research, the physical mechanics of next-gen robotics are also continually progressing. Physical components and control systems such as hydraulic pumps and cylinders, servo motors, and structural members are under pressure to continually be lighter, stronger, more efficient and less expensive. Increased demands on the physical components facilitate the need for innovative solutions in design and material usage. Advancements in construction and technology have spilled into all areas of robotic mechanisms and the many seals located throughout the system need to meet the challenges of tomorrow. Eclipse has been at the forefront of this research and has developed innovative solutions pushing the boundaries of conventional sealing devices. MicroLip™ by Eclipse is a prime example of most demanding applications forging new technologies in the sealing world. The Client's Issue Eclipse was approached by a leading robotics company looking for a sealing solution operating under a challenging set of conditions. While many components of tomorrow’s robotics are now controlled and actuated by servo/stepper motors and various electronic devices, the heaviest and most powerful movements are still driven by traditional hydraulics. The constant demand for more powerful hydraulic actuation in ever deceasing size and weight requirements has put tremendous strain on component design. But if robots are to progress to the point where they are usefully employed in the world, high power in a compact design is necessary. A robot, for example, used to survey and assist in a disaster zone too unstable for normal rescuers, must fit through doorways and over obstacles yet still be physically strong enough to render assistance. Large hydraulic systems are capable of moving extremely heavy loads but size and weight constraints of a humanoid size robot limit potential. The robot’s internal power supply to drive all components is also a limiting factor. Our client was developing a new hydraulic pump to drive all major motion aspects of their robotic systems. Their main objective was to minimize the pump’s physical size as much as possible while increasing output and improving power consumption efficiency. This means higher pressures and speeds on increasingly smaller and lighter components. Application Parameters: Shaft Diameter: Ø9.5mm Seal Housing Envelope: 5mm radial cross-section by 6mm axial width Rotational Speed: 3,500 RPM nominally; 6,000 RPM max Operating Pressure: 125 PSI min, 225 PSI nominal, 350 PSI max Surface Finish: 0.04µm Media: Hydraulic Oil While the above combination of pressure and speed might present difficulties for any conventional seal alone, the client’s extremely small physical envelope to house the seal further complicated the matter. If that wasn’t enough, the application presented the additional sealing challenge of up to 0.003” [0.08mm] of shaft runout. As part of the downsizing of all components in the pump, shaft support bearings were minimized leading to the possibility of runout. The wobbling effect of the shaft creates problems as the sealing lip has follow a moving, uneven mating surface, therefore potential leak-paths are created. Wear life can also be compromised due to higher concentrations of uneven loads. The combination of high pressure, high speed, high runout and minimal gland size present a worst-case scenario for a typical seal. Unsurprisingly, the client faced leakage of hydraulic fluid after only short periods of service with any conventional seal they had tested. Eclipse knew the had the perfect solution for this application. One developed to handle such extreme rotary sealing conditions: MicroLip™.
Share by: