Blog Layout

Why Do PTFE and Other Plastic Seals Need Energizers?

Cliff • Oct 20, 2017

As the operating parameters of industrial technologies and manufacturing processes get more extreme, the need for optimal sealing solutions become that much more important.

Elevated temperatures and pressures, higher speeds, extreme environments, faster gas decompression, and aggressive medias all make sealing more critical. This extends right across static, reciprocating, rotary, and oscillating applications.

This challenge has been met very effectively by the inventive addition of energizers to seals. Energized seals give the ultimate performance in the most demanding conditions and critical applications.

Spring or o-ring energizers can extend the normal limits of PTFE and plastic materials to deliver durable ultra-tight sealing capability. Here’s a rundown of how energizers work and how they can elevate your next sealing challenge.

How Energizers Work

PTFE has highly effective physical characteristics for seals, including low friction, heat tolerance, and chemical inertness. However, PTFE also has limited flexibility and elasticity.

Cantilever spring seal

The addition of a spring or o-ring behind a PTFE seal lip adds a persistent ‘springy force’ or ‘energy’ to press the lip against a metal surface such as a rod or cylinder.

Canted coil seal

When a seal is installed into a gland/cavity, the seal lip and spring (or o-ring) are compressed radially – providing a resilient pressure against contacting surfaces. This creates a tight and consistent seal, preventing leakage of fluid or gases.

Channel seal – piston

Benefits of Energizers

The resilient pressure of an energizer compensates for and overcomes several practical problems, including the following:

Lip pressure

Even after the lip material wears down over time, the energizer continues to push the lip tightly – otherwise the seal would become loose and leaky.

Adaption to deformation

With deformation of metal components contacting a seal (rods, shafts, cylinders, housings), energized lips adaptably fit around ‘humps and hollows’ to maintain sealing.

Adaption to misalignment

When components are misaligned, such as with eccentric deflection, energized lips dynamically move in and out to maintain close contact.

Picking up the slack

Manufacturing tolerances and clearances are not critical, as energized lips can ‘take up the slack.’ Thermal expansion and contraction can be likewise accommodated

Optimal Performance at All Pressures

The radial pressure maintained by a spring or o-ring keeps sealing lips in contact with mating surfaces even before fluid or gas pressure is applied, providing good low pressure sealing capability.

When system pressure is applied, energizer action is intensified – increasing the force on lips to make a tighter seal. The radial pressure is always higher than the pressure of the fluid or gas to be sealed.

Energizer Options to Meet Your Needs

Eclipse offers a wide range of high-performance spring and o-ring-energized seals to meet rigorous demands. Contact us to find out how energized seals can cost-effectively serve your critical applications.

Seal Terminology 101
By Doug 03 Oct, 2022
While the average person can probably recognize a rubber O-Ring, knowledge of advanced sealing devices remains a largely obscure field of knowledge. Eclipse is here to be the subject matter experts and guide you to the best sealing solution, but being familiar with some basic seal terminology will aid us in the process. The ability […]
Sealing 15,000 PSI at 300°F With a Large Extrusion Gap
By Doug 10 Aug, 2022
Eclipse serves dozens of industries and provides sealing solutions for applications on, off, and below the surface of the planet.  Each application has its own set of challenges whether it be manned space flight, surgical medical instruments, or high-volume automotive components. One industry that continually presents Eclipse with challenging sealing conditions is oil and gas. […]
Fillers That Improve PTFE’s Performance
By Doug 30 Jun, 2022
PTFE was discovered in the 1930s as an accidental byproduct of chlorofluorocarbon refrigerant production. It’s a synthetic compound consisting wholly of carbon and fluorine — a fluorocarbon. Its many unique properties make it highly attractive as a seal material. It possesses one of the lowest friction coefficients of any known material, is nearly 100% chemically […]
Cantilever V-Spring
By Doug 19 Apr, 2022
Shortly after the discovery and use of PTFE as a seal material, the need for a secondary energizing method became apparent.  Unlike rubber or urethane which possess elastic and spring-like properties, PTFE will not return to its original state once deformed. This is obviously not a desirable trait for sealing material, especially in dynamic sealing […]
Share by: