Blog Layout

What Makes a Part Process-Capable?

Cliff • May 21, 2019

Machining plastics is as much a skill as it is an art form. It takes understanding that whenever you cut a part, it will probably have some motion or energy still within the material.

This is largely because our parts have more rebound than steel in the cutting process. And while plastics are mostly thermally stable, they’re not dimensionally, thermally stable.

Changes in temperature from the time the part is machined, inventoried, and put into service show that our parts are constantly changing in size. PTFE or Teflon suffer the greatest change in thermal instability where we machine the part, around 74 degrees Fahrenheit.

What Makes a Machining Operation or a Specific Dimension Process-Capable?

You might think that if you can make a part and verify that it’s intolerance, then the part is process-capable. But the reality is that a large tolerance range doesn’t make a part process-capable.

At Eclipse, we implement a rigorous process to ensure parts remain process-capable after machining is complete.

By measuring the parts after a run and reviewing all the critical dimensions, we find standard deviation for a dimension. We then can estimate with a high degree of certainty if, during the process, we will have parts with dimensions that will fall outside the tolerance range.

Our experience with this process helps ensure accuracy. But without doing an actual analysis based on real parts that we would run on a job, we can’t know with complete certainty if a particular dimension will be within tolerance.

One thing is certain: If you dimension a plastic part and apply metal tolerances, we will most certainly fall outside the process-capable range for that part.

Certain materials like PEEK will hold tolerance during a machining run far better that Teflon. But there are some dimensions we hold in Teflon which can be maintained to a high degree.

Usually, if we design a part with our standard manufacturing tolerances, it will certainly have a bigger tolerance range than if we design with steel. Most often, making the tolerance range smaller has little to no impact on plastic parts. Under pressure, the parts get pushed around, and are constantly changing shape to some degree.

So why bother with tolerancing at all?

We design to fit the application, so our products have to fit into the required hardware. And depending on the type of elastomer, we may need to hold tolerances on a particular dimension so the seal will perform in the entire range in which a customer wants to use it.

What Is and Isn’t Critical

When we look at why a seal preforms, the wall dimension (cross-section) generally has the most influence on success or failure. This is due to the seal being energized by either an O-ring or a spring , and the impact of the extrusion gap on the sealing system.

The width is usually the second most important factor, as the seal must be able to move freely in the gland. The least important dimension is usually the diameter. We need the seal to sit in the gland so that it can be assembled; but in general, this is the one dimension in which you’ll see the greatest change due to temperature.

Unless the application is operating in a very cold environment, the diameter must allow the seal to sit in the gland and not protrude too much for installation. Tolerances on large diameter seals (over a couple of feet) often are +/-.060 inch. This may seem like a lot, but throw in a little temperature and you find that fluctuation at this scale isn’t impossible.

How Do We Determine Process Capability?

The use of process capability calculations became common for suppliers to the automotive industry due to the large quantity of parts being made, and the need for upper-tier suppliers to know with certainty that they were getting good product.

A process capability study will tell you how likely the process is to make a good part. We won’t go into the statistical formulas in this article, but it’s enough to know that given dimensional data from a run, we can use the equations to find out a number that will indicate how likely we are to meet print tolerances.

The main index that we look at is labeled “Cpk”. The Cpk is calculated for critical dimensions using the tolerance limits and the data from a sample run. The higher the Cpk value, the more capable the process and the likelihood of making good parts.

Industry standards aim for a value of 1.33 for industrial parts and 1.67 for aerospace. In order for a process to reach high Cpk levels, the parts must be made using a small portion of the tolerance range and run at the middle of that range.

Generally speaking, a Cpk less than 1.0 indicates that the process isn’t capable, and is likely to produce parts that are out of print tolerance.

Process Capability Put to Use

How do we make use of Cpk? In practice, the machinery, tools, and processes are all known well before a part is designed. So putting a non-capable tolerance on a print will place undue burden on the inspection required to supply parts to that print.

A much better approach is to consider the capability of the process first, allow for that variation, and then design the part to accommodate the required tolerance. Having run Cpk on all our processes, Eclipse has an excellent understanding of what is process-capable and uses that knowledge to design and manufacture seals accordingly. In the case of customer-designed parts, we offer process-capable tolerancing in our quotes.

By Doug Montgomery February 13, 2025
Learn how Eclipse Seal’s custom spring energized ball seats with angled grooves improve performance
By Doug Montgomery January 17, 2025
Eclipse deals regularly with challenging sealing applications from all industries. High pressures and speeds create unique sets of conditions where seal design and material properties are pushed to the limit. While reciprocating applications can certainly test seals to the edge of capability, often times rotary applications can present the greatest challenge to seal integrity and wear life. Unlike reciprocating configurations where the seal is acting on a different part of the shaft or bore throughout it’s operating range, rotary seals must operate on the same sealing area continuously. This makes things like heat rejection much more difficult, especially in unlubricated or dry running applications. Extreme localized heating can have negative affect on both seal and hardware life. Rotary applications also pose sealing difficulties due to the simple fact that surface speeds can be much higher than in reciprocating systems. A simple electric motor can operate at very high rpm, while long stroke, high speed reciprocating machinery is a major piece of equipment that is far less common (though Eclipse also has sealing solutions in a number of these situations). A customer approached Eclipse with an application that was beyond the scope and capability of any standard, off-the-shelf rotary seal. This sealing system would require a combination of both wear resistance in high-speed rotary, as well as excellent leakage control and sealability. Two factors that, more often than not, work in opposition to each other. The Customer Issue The customer was developing a test system that required an electric motor shaft passed through the wall of a large vacuum chamber. The testing apparatus needed a sizable motor to meet the speed and torque requirements. Adapting the motor to operate inside the chamber would not be practical due to contamination and motor cooling concerns. Therefore, the motor would have to be placed outside the chamber and a driveshaft would have to go through the chamber wall. Which, of course, would need a seal. Operating Conditions:
 Rotary Shaft Seal
 Shaft Diameter: 2.5”
 RPM: 7,500 RPM - unlubricated
 Pressure: Vacuum internal side / 1 ATM external side Temperature: 40° - 90°F The customer knew any kind of off-the-shelf rotary seal with a rubber element would not last any amount of time in the combination of speed and a dry running condition. They also knew a single lip PTFE seal would likely not meet their leakage requirements. Therefore, they turned Eclipse for a custom sealing solution.
By Doug Montgomery November 25, 2024
Eclipse has engineered sealing solutions for applications all over the planet and in a plethora of environments. From the bottom of the ocean to orbiting the earth, Eclipse is challenged by the unique conditions in each application. Whether it be extreme temperature and pressure or severely caustic or abrasive media, Eclipse has a solution for most every sealing problem. One distinct environment presents a particularly challenging set of circumstances for seal design – high radiation. Eclipse’s primary seal material choice for many applications is PTFE and PTFE blends. With all the wonderful attributes PTFE possesses as a seal material, radiation resistance is not one. In high radiation environments PTFE’s properties can degrade to essentially rule it out as a suitable material. The options for effective sealing materials that are also radiation resistant becomes very limited. The seal designer is therefore confronted with creating a seal that is expected to perform in every way a typical PTFE seal operates, out of materials that are not as favorable to sealing. This is where Eclipse’s engineering experience and expertise in seal design come to the forefront. The Client's Issue Eclipse was approached by a customer that was looking for a seal solution for a sensor used in a nuclear application. It would be operating in an environment with both high temperature and high Gamma radiation. Operating Conditions:
 Reciprocating Rod Seal
 Rod Diameter: Ø1.000
 Stroke: 1.5”
Cycle Rate: 2-4 cycles per minute
 Media: Air, Salt Water Mist
 Pressure: 100 PSI
 Temperature: 70° to 450°F
 Gamma Radiation Exposure: 10^6 rads
By Doug Montgomery November 14, 2024
Technological advancements in the area of robotics have led to more and more life-like creations existing only in works of science fiction a few decades ago. Development in autonomous logic processing and sensing allows bipedal robots to walk over uneven ground, up and down stairs, open doors and carry loads. Fast response to dynamic and unpredictable real-world environments is critical for the future use of robots in true-life service and practical employment in the years to come. While software and sensor development remain the primary focus of most research, the physical mechanics of next-gen robotics are also continually progressing. Physical components and control systems such as hydraulic pumps and cylinders, servo motors, and structural members are under pressure to continually be lighter, stronger, more efficient and less expensive. Increased demands on the physical components facilitate the need for innovative solutions in design and material usage. Advancements in construction and technology have spilled into all areas of robotic mechanisms and the many seals located throughout the system need to meet the challenges of tomorrow. Eclipse has been at the forefront of this research and has developed innovative solutions pushing the boundaries of conventional sealing devices. MicroLip™ by Eclipse is a prime example of most demanding applications forging new technologies in the sealing world. The Client's Issue Eclipse was approached by a leading robotics company looking for a sealing solution operating under a challenging set of conditions. While many components of tomorrow’s robotics are now controlled and actuated by servo/stepper motors and various electronic devices, the heaviest and most powerful movements are still driven by traditional hydraulics. The constant demand for more powerful hydraulic actuation in ever deceasing size and weight requirements has put tremendous strain on component design. But if robots are to progress to the point where they are usefully employed in the world, high power in a compact design is necessary. A robot, for example, used to survey and assist in a disaster zone too unstable for normal rescuers, must fit through doorways and over obstacles yet still be physically strong enough to render assistance. Large hydraulic systems are capable of moving extremely heavy loads but size and weight constraints of a humanoid size robot limit potential. The robot’s internal power supply to drive all components is also a limiting factor. Our client was developing a new hydraulic pump to drive all major motion aspects of their robotic systems. Their main objective was to minimize the pump’s physical size as much as possible while increasing output and improving power consumption efficiency. This means higher pressures and speeds on increasingly smaller and lighter components. Application Parameters: Shaft Diameter: Ø9.5mm Seal Housing Envelope: 5mm radial cross-section by 6mm axial width Rotational Speed: 3,500 RPM nominally; 6,000 RPM max Operating Pressure: 125 PSI min, 225 PSI nominal, 350 PSI max Surface Finish: 0.04µm Media: Hydraulic Oil While the above combination of pressure and speed might present difficulties for any conventional seal alone, the client’s extremely small physical envelope to house the seal further complicated the matter. If that wasn’t enough, the application presented the additional sealing challenge of up to 0.003” [0.08mm] of shaft runout. As part of the downsizing of all components in the pump, shaft support bearings were minimized leading to the possibility of runout. The wobbling effect of the shaft creates problems as the sealing lip has follow a moving, uneven mating surface, therefore potential leak-paths are created. Wear life can also be compromised due to higher concentrations of uneven loads. The combination of high pressure, high speed, high runout and minimal gland size present a worst-case scenario for a typical seal. Unsurprisingly, the client faced leakage of hydraulic fluid after only short periods of service with any conventional seal they had tested. Eclipse knew the had the perfect solution for this application. One developed to handle such extreme rotary sealing conditions: MicroLip™.
Share by: