Blog Layout

What You Should Know About Pressure-Velocity (PV)

Cliff • January 26, 2021

When it comes to designing dynamic seals, the two most important application parameters are the pressure and the speed of the motion. These two factors chiefly determine the type of seal, design geometry, and seal materials you should choose.

When dynamic speeds and system pressures become elevated, determining the life expectancy of the seal becomes an important point of analysis. A seal that’s low friction, cost-effective, and seals outstandingly are useless if it only lasts a few hours before wearing out.

To quickly gauge the feasibility of a seal’s performance and provide a baseline metric, seal engineers use a calculation called Pressure-Velocity (PV).

Female Fitness and Bodybuilding Beauties: Tasha Star – Fitness Beauties tren hex half life side effects stopping steroids, side effects of anabolic steroids in bodybuilding – noudoc.com – website info judi online kartu indoinesia Below we’ll explore what PV is, how it’s calculated, and what makes it an important tool in seal design.

What Is PV?

Simply put, pressure-velocity is the product of pressure and velocity. In other words, the pressure of the system is multiplied by the surface speed of the dynamic seal interface.

To produce a value that’s consistent for comparison throughout the industry, the units used to express the pressure and speed are important. In the US, pressure is always calculated with PSI and surface speed in feet per minute.

The first step in calculating the PV is determining the surface speed of the system. In a rotary application, the diameter of the dynamic surface and RPM are needed. In reciprocating, the stroke length and cycle rate are required.

Once the surface speed is known, simply multiply it by the system pressure.

Example PV calculations:

Why Is PV Important?

PV is used as a quick gauge of the plausibility for the success of a sealing system in a given application. The exact value itself is not of tremendous importance, but it provides a relative idea of the stress and projected wear life of a seal.

How fast a seal will wear is a function of both the surface speed and pressure of the system. Sanding a piece of wood with some sandpaper serves as a good analogy: You’ll wear away more wood by either sanding faster or pressing harder. Doing both results in the maximum wear rate.

This is essentially what happens at a microscopic level to a sealing element. High pressure and high-speed result in a high wear rate. Once a sealing lip or element is severely worn, positive contact with the sealing surface will be lost resulting in leakage.

In high-pressure applications, structural integrity of the seal might also be compromised.

So assessing wear rate potential of a system is important.

PV considers both pressure and speed to provide a practical and quick evaluation for reference.

PV Values

PV is generally not discussed until values become elevated. It’s most often used for rotary applications. While pressures in reciprocating applications can be quite high, it’s much more difficult to generate significant surface speed, unlike rotary applications.

PVs of less than 30,000 would be considered mild and most typical catalog sealing solutions should operate at nominal performance and life expectancies.

The most referenced PV limit is usually 100,000. At this value, the transition between nominal wear and high or severe wear occurs.

There are many application-specific factors that will determine the PV limit of a system.

Temperature, lubrication, hardware finishes, and runout all contribute to the wear limit of the sealing system. A PV of 100,000 is not simply the end of the story — it’s typically the value that will get the attention of any seal designer.

A PV of greater than 200,000 is of immediate concern. This is considered the “severe wear zone” for a seal operating in those conditions.

If a customer presents Eclipse with a sealing application with this kind of PV, further discussion about the life-expectancy goals of the system is in order.

Eclipse has designed and manufactured successful sealing systems for PVs as high as 300,000. But at these levels, what one customer considers successful might be very different from another. Wear life of a seal under these conditions will likely only be a few hours.

Not All PV Is the Same

Clever readers might have realized that it’s possible to produce the same PV through different combinations of pressure and velocity. As demonstrated below, three very different operating and application parameters can all generate the exact same PV value.

This is important because the optimum type of seal in each of these situations will be totally different. A seal cannot be chosen based solely on PV alone.

Here’s a look at the different applications for PV pressure and the best seals to use for each:

High RPM, Low-Pressure Applications

Cased Lip Seals , Crimped Case Seals , and MicroLip ™are typically best suited. Their light loading means low friction and long wear life. These are typically found in gearboxes and as electric motor shaft seals.

Medium RPM, Medium Pressure Applications

Cased Spring Energized Seals , O-Ring Heel , and O-Ring OD Spring Energized Seals are best suited for this application. When pressure exceeds the limits for rotary lip seals, but surface speed is in check, these can be a good choice.

Eclipse’s in-house manufactured Canted Coil spring is usually employed for precise friction control and consistent loading.

Low RPM, High-Pressure Applications

Rotary Seal Rings are the seal of choice. Standard designs can handle pressures up to 4,500 psi. A specialized friction coating is applied to the O-Ring/Seal interface ensuring anti-rotation. These seals are often found in rotary unions transmitting hydraulic fluid or air.

Pressure Velocity Further Explained

Determining the pressure velocity of your application is integral to its success and the lifetime of the seal you’re using. By gaining some basic background on PV, you’ll be better equipped to work your way through the seal design process.

Eclipse’s team is dedicated to finding the right sealing solution to every application and educating others on the inner workings of the seal industry.

Our Engineering Manager, Chris Gruner, gives a quick math lesson on how to calculate pressure velocity. Once you understand how it works, it can be a quick and valuable way to decide what type of seal is needed.

 

Learn how Eclipse solved manufacturing challenges for micro spring-energized seals
By Doug Montgomery March 21, 2025
Learn how Eclipse solved manufacturing challenges for micro spring-energized seals, optimizing sealing performance in epoxy dispensing equipment.
By Doug Montgomery February 13, 2025
Learn how Eclipse Seal’s custom spring energized ball seats with angled grooves improve performance
By Doug Montgomery January 17, 2025
Eclipse deals regularly with challenging sealing applications from all industries. High pressures and speeds create unique sets of conditions where seal design and material properties are pushed to the limit. While reciprocating applications can certainly test seals to the edge of capability, often times rotary applications can present the greatest challenge to seal integrity and wear life. Unlike reciprocating configurations where the seal is acting on a different part of the shaft or bore throughout it’s operating range, rotary seals must operate on the same sealing area continuously. This makes things like heat rejection much more difficult, especially in unlubricated or dry running applications. Extreme localized heating can have negative affect on both seal and hardware life. Rotary applications also pose sealing difficulties due to the simple fact that surface speeds can be much higher than in reciprocating systems. A simple electric motor can operate at very high rpm, while long stroke, high speed reciprocating machinery is a major piece of equipment that is far less common (though Eclipse also has sealing solutions in a number of these situations). A customer approached Eclipse with an application that was beyond the scope and capability of any standard, off-the-shelf rotary seal. This sealing system would require a combination of both wear resistance in high-speed rotary, as well as excellent leakage control and sealability. Two factors that, more often than not, work in opposition to each other. The Customer Issue The customer was developing a test system that required an electric motor shaft passed through the wall of a large vacuum chamber. The testing apparatus needed a sizable motor to meet the speed and torque requirements. Adapting the motor to operate inside the chamber would not be practical due to contamination and motor cooling concerns. Therefore, the motor would have to be placed outside the chamber and a driveshaft would have to go through the chamber wall. Which, of course, would need a seal. Operating Conditions:
 Rotary Shaft Seal
 Shaft Diameter: 2.5”
 RPM: 7,500 RPM - unlubricated
 Pressure: Vacuum internal side / 1 ATM external side Temperature: 40° - 90°F The customer knew any kind of off-the-shelf rotary seal with a rubber element would not last any amount of time in the combination of speed and a dry running condition. They also knew a single lip PTFE seal would likely not meet their leakage requirements. Therefore, they turned Eclipse for a custom sealing solution.
By Doug Montgomery November 25, 2024
Eclipse has engineered sealing solutions for applications all over the planet and in a plethora of environments. From the bottom of the ocean to orbiting the earth, Eclipse is challenged by the unique conditions in each application. Whether it be extreme temperature and pressure or severely caustic or abrasive media, Eclipse has a solution for most every sealing problem. One distinct environment presents a particularly challenging set of circumstances for seal design – high radiation. Eclipse’s primary seal material choice for many applications is PTFE and PTFE blends. With all the wonderful attributes PTFE possesses as a seal material, radiation resistance is not one. In high radiation environments PTFE’s properties can degrade to essentially rule it out as a suitable material. The options for effective sealing materials that are also radiation resistant becomes very limited. The seal designer is therefore confronted with creating a seal that is expected to perform in every way a typical PTFE seal operates, out of materials that are not as favorable to sealing. This is where Eclipse’s engineering experience and expertise in seal design come to the forefront. The Client's Issue Eclipse was approached by a customer that was looking for a seal solution for a sensor used in a nuclear application. It would be operating in an environment with both high temperature and high Gamma radiation. Operating Conditions:
 Reciprocating Rod Seal
 Rod Diameter: Ø1.000
 Stroke: 1.5”
Cycle Rate: 2-4 cycles per minute
 Media: Air, Salt Water Mist
 Pressure: 100 PSI
 Temperature: 70° to 450°F
 Gamma Radiation Exposure: 10^6 rads
Share by: