Blog Layout

How To Design The Perfect Seal For An Accumulator

Cliff • September 3, 2020

An accumulator is an apparatus for storing energy or power. This is an obsolete term for a capacitor, which is commonly used in electrical engineering.

In hydraulic systems, we use accumulators for two very specific purposes:

  1. To store energy for use either in an emergency or to give a momentary surge of power due to the loss of the hydraulic system.

    In an aircraft
    , for example, you could use an accumulator when you need to “blow down” the landing gear. A valve is opened to release the fluid into the landing gear system, forcing the gear into the down-and-locked position.
  2. The second use for an accumulator is to act as a shock absorber in a hydraulic system. Since hydraulic fluid is generally considered non-compressible, an accumulator can “smooth out the bumps.”

A good example of this is when a crane is slewing, and the operator wants to move the load very slowly without jerking it around. Hydraulic gear motors and pumps often create pulses that an accumulator will absorb and thereby not transfer those pulses to the load where a welder may be setting a beam on a building.

Common Types of Accumulators

There are two common accumulators:

  1. Bladder-style accumulator
  2. Piston-style accumulator

Both accumulator types use nitrogen gas as the energy-storing or shock-absorption method, but both work dramatically different.

Bladder Style Accumulator

The bladder-style accumulator has a rubber bladder inside a rounded-chamber, with a Schrader valve sticking out of the chamber on one side.

The other side contains a type of hydraulic fitting arrangement, which allows you to connect a hydraulic line to the device. This style looks a little bit like a bomb to allow the rubber bladder to not crease within the device.

The bladder is normally filled with nitrogen gas. This pressure can vary depending on the application, but oftentimes sits between 500 and 1000 psi nitrogen gas.

Without hydraulic fluid in the system, the entire bladder fills the cavity. When a hydraulic source is attached and exceeds the pressure in the accumulator, the rubber bladder acts as a hydraulic spring, absorbing shock waves within the hydraulic system over the pressure of the static accumulator.

Uses of Bladder-Style Accumulators

Many homes use an accumulator in their water systems to stop “water hammer” — that clang you might hear when you shut the water valve too quickly. The accumulator absorbs that shock in water.

In the earlier example of a crane slewing, it’s the combination of the teeth in the gear motor and pump that cause the vibration felt at the end of the load. Oftentimes, some well-placed, high-pressure hoses in between all the rigid tubing in the hydraulic system will accomplish the same task the accumulator does.

Thus, the bladder-style accumulator is excellent for shock absorption.

Piston-Style Accumulators

The second common style of accumulator is the piston accumulator. This device is usually intended to store energy, and release that energy on-demand.

Because this is typically not a momentary device, the amount of energy is taken up by the displacement of a piston in a long tube where the “piston” is used to compress the nitrogen gas.

This compression causes the gas pressure to rise above the initial pressure, and thereby stores the energy until a valve is opened, allowing the compressed nitrogen gas to force the piston down the tube. This in turn forces the hydraulic fluid to move from the tube and exert energy.

Use of Piston-Style Accumulators

Calling back to the example we used earlier about needing to lower landing gear, the accumulator needs to have enough travel to move the stowed gear in the up-and-locked position into the down-and-locked position.

The length and diameter of the accumulator must at least match the volume necessary to extend the gear with a margin of safety. There also needs to be enough pressure from the system to cause the gear to lock into place at the bottom of the stroke.

Since the piston-style accumulator is a dynamic device, the piston will be required to move rapidly down the tube without scoring the tube. Unlike the bladder accumulator, the piston-style will require dynamic seals on the piston to allow it to maintain nitrogen pressure in a dynamic state without leaking the nitrogen to the hydraulic side. 

This is a bit more complicated than the bladder, which is a single membrane.

The piston must be able to move quickly with low friction, and will generally requires some kind of rubber contact to hold the nitrogen gas from leaking into the hydraulic system.

Eclipse Accumulator Seals

At Eclipse , our seal engineers design a “Q” seal that uses a Teflon element as the piston seal, with a combination of rubber energizers and an “X” ring in the middle of the Teflon piston seal to stop the flow of gas across to the hydraulic side.

This combination allows for rubber contact against the nitrogen. Nestling the X ring within the Teflon seal lowers the force of the X ring on the bore, keeping friction and heat to a minimum.

A set of Teflon wear rings on both sides of the Q seal allows the piston to “float” without scoring on the bore of the tube. There should be no side loading in this design, and keeping the piston centered in the bore protects the sealing surface against scratches which would allow the nitrogen to eventually leak out.

Eclipse Seals in Modern Day Aircraft

Like accumulators, another crucial hydraulic system seal can be found in aircraft. This system controls the brakes, suspension, flap actuators, landing gear, and more. These systems undergo extreme amounts of stress, especially during take-off and landing.

The types of custom seals our seal engineering specialists create for aircraft hydraulic systems are made of durable polytetrafluoroethylene, otherwise known as PTFE, or by its household name of Teflon.

By Doug Montgomery November 25, 2024
Eclipse has engineered sealing solutions for applications all over the planet and in a plethora of environments. From the bottom of the ocean to orbiting the earth, Eclipse is challenged by the unique conditions in each application. Whether it be extreme temperature and pressure or severely caustic or abrasive media, Eclipse has a solution for most every sealing problem. One distinct environment presents a particularly challenging set of circumstances for seal design – high radiation. Eclipse’s primary seal material choice for many applications is PTFE and PTFE blends. With all the wonderful attributes PTFE possesses as a seal material, radiation resistance is not one. In high radiation environments PTFE’s properties can degrade to essentially rule it out as a suitable material. The options for effective sealing materials that are also radiation resistant becomes very limited. The seal designer is therefore confronted with creating a seal that is expected to perform in every way a typical PTFE seal operates, out of materials that are not as favorable to sealing. This is where Eclipse’s engineering experience and expertise in seal design come to the forefront. The Client's Issue Eclipse was approached by a customer that was looking for a seal solution for a sensor used in a nuclear application. It would be operating in an environment with both high temperature and high Gamma radiation. Operating Conditions:
 Reciprocating Rod Seal
 Rod Diameter: Ø1.000
 Stroke: 1.5”
Cycle Rate: 2-4 cycles per minute
 Media: Air, Salt Water Mist
 Pressure: 100 PSI
 Temperature: 70° to 450°F
 Gamma Radiation Exposure: 10^6 rads
By Doug Montgomery November 14, 2024
Technological advancements in the area of robotics have led to more and more life-like creations existing only in works of science fiction a few decades ago. Development in autonomous logic processing and sensing allows bipedal robots to walk over uneven ground, up and down stairs, open doors and carry loads. Fast response to dynamic and unpredictable real-world environments is critical for the future use of robots in true-life service and practical employment in the years to come. While software and sensor development remain the primary focus of most research, the physical mechanics of next-gen robotics are also continually progressing. Physical components and control systems such as hydraulic pumps and cylinders, servo motors, and structural members are under pressure to continually be lighter, stronger, more efficient and less expensive. Increased demands on the physical components facilitate the need for innovative solutions in design and material usage. Advancements in construction and technology have spilled into all areas of robotic mechanisms and the many seals located throughout the system need to meet the challenges of tomorrow. Eclipse has been at the forefront of this research and has developed innovative solutions pushing the boundaries of conventional sealing devices. MicroLip™ by Eclipse is a prime example of most demanding applications forging new technologies in the sealing world. The Client's Issue Eclipse was approached by a leading robotics company looking for a sealing solution operating under a challenging set of conditions. While many components of tomorrow’s robotics are now controlled and actuated by servo/stepper motors and various electronic devices, the heaviest and most powerful movements are still driven by traditional hydraulics. The constant demand for more powerful hydraulic actuation in ever deceasing size and weight requirements has put tremendous strain on component design. But if robots are to progress to the point where they are usefully employed in the world, high power in a compact design is necessary. A robot, for example, used to survey and assist in a disaster zone too unstable for normal rescuers, must fit through doorways and over obstacles yet still be physically strong enough to render assistance. Large hydraulic systems are capable of moving extremely heavy loads but size and weight constraints of a humanoid size robot limit potential. The robot’s internal power supply to drive all components is also a limiting factor. Our client was developing a new hydraulic pump to drive all major motion aspects of their robotic systems. Their main objective was to minimize the pump’s physical size as much as possible while increasing output and improving power consumption efficiency. This means higher pressures and speeds on increasingly smaller and lighter components. Application Parameters: Shaft Diameter: Ø9.5mm Seal Housing Envelope: 5mm radial cross-section by 6mm axial width Rotational Speed: 3,500 RPM nominally; 6,000 RPM max Operating Pressure: 125 PSI min, 225 PSI nominal, 350 PSI max Surface Finish: 0.04µm Media: Hydraulic Oil While the above combination of pressure and speed might present difficulties for any conventional seal alone, the client’s extremely small physical envelope to house the seal further complicated the matter. If that wasn’t enough, the application presented the additional sealing challenge of up to 0.003” [0.08mm] of shaft runout. As part of the downsizing of all components in the pump, shaft support bearings were minimized leading to the possibility of runout. The wobbling effect of the shaft creates problems as the sealing lip has follow a moving, uneven mating surface, therefore potential leak-paths are created. Wear life can also be compromised due to higher concentrations of uneven loads. The combination of high pressure, high speed, high runout and minimal gland size present a worst-case scenario for a typical seal. Unsurprisingly, the client faced leakage of hydraulic fluid after only short periods of service with any conventional seal they had tested. Eclipse knew the had the perfect solution for this application. One developed to handle such extreme rotary sealing conditions: MicroLip™.
By Doug Montgomery October 14, 2024
How Eclipse reverse-engineered custom PTFE gaskets to restore a brewery’s historic equipment, ensuring leak-free connections and consistent, quality beer production.
By Doug Montgomery September 10, 2024
Custom piston seal rings by Eclipse enhance compressor performance, offering dry-run capability and extended wear life without hardware modifications.
Share by: