Blog Layout

Designing Cryogenic Seals for High and Low Temperature Sealing

Cliff • March 19, 2019

When designing for low temperature sealing, the first step is to define the temperature range that the seal will be operating in.

We typically define cryogenic as seals operating below -65 Fahrenheit. We pick this point because we currently have elastomers that have a usable TR10 value at this temperature.

When designing at this level — with high temperatures around 300 Fahrenheit — an understanding of what level of leakage control is required on the low temp end. Seals that operate in aircrafts must function within this range.

However, there may be an allowable leakage rate which allows for reduced drag. When requiring zero leak, the drag in the system is often increased to support some elastomeric contact with a dynamic surface. In the case of static seals, elastomers span this range although increased squeeze may be necessary.

Eclipse Engineering routinely designs in the range indicated above.

While -65 Fahrenheit is extreme cold, we don’t consider this cryogenic. Liquid nitrogen at -320° Fahrenheit (-195°Celsius), requires special hardware and seal material consideration.

To begin, we often find ourselves sealing with no lubricant in dynamic applications. To improve sealability, a better-than-average surface finish is required.

Surface finish often holds lubricity. But without this, a smooth finish reduces friction, improves life, lowers drag, and improves sealability.

Static seals are often required to have leak rates approaching zero; meaning hardware considerations and surface can be even more important. This may mean polishing the groove, which in some applications can be very challenging.

Cryogenic Seal Materials

The next criteria are the seal materials. Elastomeric materials lose their flexibility at these extreme temperatures, and so we rely on polymer type materials to bridge the gap. When we experience temperatures below -180° Fahrenheit ( -195° Celsius), we begin to move away from basic PTFE to modified fluoropolymers such as PCTFE, known for operating down to -460 Fahrenheit.

We try to keep fillers from very little to none. (Fillers extend wear life of these polymers). These materials require some kind of spring force to activate them, as they have very poor memory. They also require an energizer to force them in contact with the mating surfaces.

Propper material selection is only a partial resolution to maintaining a seal, as special cross section designs are necessary to reduce the amount of force required to move the material at these extreme temperatures.

When you consider the pressures we may be sealing, back up rings also become necessary if the cross sections become too narrow. We typically design these cross sections around a spring that forces the seal in conformance with the hardware.

Special consideration is given to the spring material — not just for chemical compatibility, but also tensile strength which provides the forces to push the seal material out.

Cryogenic Seal Types

Eclipse Engineering designs with a variety of spring types such as cantilever , canted coil, helical , and raco. We also design in a variety of materials such as various grades of stainless, hastelloy, elgiloy, and inconel.

These materials and spring types allow us a great deal of flexibility in conforming to a customer’s hardware envelope.

Cryogenic Seal Jacket Material

A final consideration is the machined surface finish of the seal jacket material. Eclipse Engineering has developed a process of “super finishing” our polymer materials to allow them to seal on installation.

We have found that many of these cryogenic applications typically don’t have high amount of dynamic motion, so break in may not be possible. Super finish allows the seals to have the best chance of sealing right out of the box.

Some typical applications in cryogenic applications include liquid oxygen or nitrogen valving. If we need to meter flow, the effects of friction become a very relevant factor, as customers often have limited space and limited force to open and close valves.

Eclipse has the ability to estimate friction forces knowing the spring rates and the coefficient of friction of the materials we seal with. Having all these pieces in place insures we perform well in these extreme conditions.

Normally, we are required to seal from 70° Fahrenheit down to these cryogenic temperatures, but sometimes we must extend to range to 100s of degrees Fahrenheit. Special consideration must be given to how much spring force we can apply, as too much can cause cold flow of the polymer, rendering the seal inoperative when it returns to cold temperatures.

Sealing cryogenics is a balancing act of many factors such as spring force, surface finish, friction and allowable leakage.

Eclipse Engineering has proven applications performing for over 20 years in these harsh sealing environments. Contact our engineering staff today with any questions about your sealing projects or applications »

By Doug Montgomery February 13, 2025
Learn how Eclipse Seal’s custom spring energized ball seats with angled grooves improve performance
By Doug Montgomery January 17, 2025
Eclipse deals regularly with challenging sealing applications from all industries. High pressures and speeds create unique sets of conditions where seal design and material properties are pushed to the limit. While reciprocating applications can certainly test seals to the edge of capability, often times rotary applications can present the greatest challenge to seal integrity and wear life. Unlike reciprocating configurations where the seal is acting on a different part of the shaft or bore throughout it’s operating range, rotary seals must operate on the same sealing area continuously. This makes things like heat rejection much more difficult, especially in unlubricated or dry running applications. Extreme localized heating can have negative affect on both seal and hardware life. Rotary applications also pose sealing difficulties due to the simple fact that surface speeds can be much higher than in reciprocating systems. A simple electric motor can operate at very high rpm, while long stroke, high speed reciprocating machinery is a major piece of equipment that is far less common (though Eclipse also has sealing solutions in a number of these situations). A customer approached Eclipse with an application that was beyond the scope and capability of any standard, off-the-shelf rotary seal. This sealing system would require a combination of both wear resistance in high-speed rotary, as well as excellent leakage control and sealability. Two factors that, more often than not, work in opposition to each other. The Customer Issue The customer was developing a test system that required an electric motor shaft passed through the wall of a large vacuum chamber. The testing apparatus needed a sizable motor to meet the speed and torque requirements. Adapting the motor to operate inside the chamber would not be practical due to contamination and motor cooling concerns. Therefore, the motor would have to be placed outside the chamber and a driveshaft would have to go through the chamber wall. Which, of course, would need a seal. Operating Conditions:
 Rotary Shaft Seal
 Shaft Diameter: 2.5”
 RPM: 7,500 RPM - unlubricated
 Pressure: Vacuum internal side / 1 ATM external side Temperature: 40° - 90°F The customer knew any kind of off-the-shelf rotary seal with a rubber element would not last any amount of time in the combination of speed and a dry running condition. They also knew a single lip PTFE seal would likely not meet their leakage requirements. Therefore, they turned Eclipse for a custom sealing solution.
By Doug Montgomery November 25, 2024
Eclipse has engineered sealing solutions for applications all over the planet and in a plethora of environments. From the bottom of the ocean to orbiting the earth, Eclipse is challenged by the unique conditions in each application. Whether it be extreme temperature and pressure or severely caustic or abrasive media, Eclipse has a solution for most every sealing problem. One distinct environment presents a particularly challenging set of circumstances for seal design – high radiation. Eclipse’s primary seal material choice for many applications is PTFE and PTFE blends. With all the wonderful attributes PTFE possesses as a seal material, radiation resistance is not one. In high radiation environments PTFE’s properties can degrade to essentially rule it out as a suitable material. The options for effective sealing materials that are also radiation resistant becomes very limited. The seal designer is therefore confronted with creating a seal that is expected to perform in every way a typical PTFE seal operates, out of materials that are not as favorable to sealing. This is where Eclipse’s engineering experience and expertise in seal design come to the forefront. The Client's Issue Eclipse was approached by a customer that was looking for a seal solution for a sensor used in a nuclear application. It would be operating in an environment with both high temperature and high Gamma radiation. Operating Conditions:
 Reciprocating Rod Seal
 Rod Diameter: Ø1.000
 Stroke: 1.5”
Cycle Rate: 2-4 cycles per minute
 Media: Air, Salt Water Mist
 Pressure: 100 PSI
 Temperature: 70° to 450°F
 Gamma Radiation Exposure: 10^6 rads
By Doug Montgomery November 14, 2024
Technological advancements in the area of robotics have led to more and more life-like creations existing only in works of science fiction a few decades ago. Development in autonomous logic processing and sensing allows bipedal robots to walk over uneven ground, up and down stairs, open doors and carry loads. Fast response to dynamic and unpredictable real-world environments is critical for the future use of robots in true-life service and practical employment in the years to come. While software and sensor development remain the primary focus of most research, the physical mechanics of next-gen robotics are also continually progressing. Physical components and control systems such as hydraulic pumps and cylinders, servo motors, and structural members are under pressure to continually be lighter, stronger, more efficient and less expensive. Increased demands on the physical components facilitate the need for innovative solutions in design and material usage. Advancements in construction and technology have spilled into all areas of robotic mechanisms and the many seals located throughout the system need to meet the challenges of tomorrow. Eclipse has been at the forefront of this research and has developed innovative solutions pushing the boundaries of conventional sealing devices. MicroLip™ by Eclipse is a prime example of most demanding applications forging new technologies in the sealing world. The Client's Issue Eclipse was approached by a leading robotics company looking for a sealing solution operating under a challenging set of conditions. While many components of tomorrow’s robotics are now controlled and actuated by servo/stepper motors and various electronic devices, the heaviest and most powerful movements are still driven by traditional hydraulics. The constant demand for more powerful hydraulic actuation in ever deceasing size and weight requirements has put tremendous strain on component design. But if robots are to progress to the point where they are usefully employed in the world, high power in a compact design is necessary. A robot, for example, used to survey and assist in a disaster zone too unstable for normal rescuers, must fit through doorways and over obstacles yet still be physically strong enough to render assistance. Large hydraulic systems are capable of moving extremely heavy loads but size and weight constraints of a humanoid size robot limit potential. The robot’s internal power supply to drive all components is also a limiting factor. Our client was developing a new hydraulic pump to drive all major motion aspects of their robotic systems. Their main objective was to minimize the pump’s physical size as much as possible while increasing output and improving power consumption efficiency. This means higher pressures and speeds on increasingly smaller and lighter components. Application Parameters: Shaft Diameter: Ø9.5mm Seal Housing Envelope: 5mm radial cross-section by 6mm axial width Rotational Speed: 3,500 RPM nominally; 6,000 RPM max Operating Pressure: 125 PSI min, 225 PSI nominal, 350 PSI max Surface Finish: 0.04µm Media: Hydraulic Oil While the above combination of pressure and speed might present difficulties for any conventional seal alone, the client’s extremely small physical envelope to house the seal further complicated the matter. If that wasn’t enough, the application presented the additional sealing challenge of up to 0.003” [0.08mm] of shaft runout. As part of the downsizing of all components in the pump, shaft support bearings were minimized leading to the possibility of runout. The wobbling effect of the shaft creates problems as the sealing lip has follow a moving, uneven mating surface, therefore potential leak-paths are created. Wear life can also be compromised due to higher concentrations of uneven loads. The combination of high pressure, high speed, high runout and minimal gland size present a worst-case scenario for a typical seal. Unsurprisingly, the client faced leakage of hydraulic fluid after only short periods of service with any conventional seal they had tested. Eclipse knew the had the perfect solution for this application. One developed to handle such extreme rotary sealing conditions: MicroLip™.
Share by: