Blog Layout

How to Avoid Stick-Slip in Your Seal

Cliff • September 15, 2017

Stick-slip is a common phenomenon that can occur in seals due to uneven friction between objects sliding across each other.

This repetitive start-stop movement or vibration known as stick-slip can cause major issues and even failure of mechanical systems, including seals. However, proper seal design and knowing what to look for can help you avoid stick-slip in your machinery’s seals.

Here’s why stick-slip happens and how you can prevent this problem in your seals.

Stick-Slip in Everyday Life

Stick-slip is familiar experience for most of us in our everyday lives. Think about when objects require more force to start their motion than to keep them in motion — like when you’re trying to slide a heavily-loaded cardboard box along a hardwood floor.

You have to give the box a strong push to overcome the friction of it ‘sticking’ to the floor. But once it starts ‘slipping’ across the floor, the movement is much smoother. If you slow down, getting the box moving again can be jerky.

 

 

Another example of every-day stick-slip is when earthquakes are generated by the rapid slipping of fault lines that have long been stationary under pressure, then suddenly give way.

Stick-Slip in Machinery

Stick-slip vibration can be commonly heard in hydraulic cylinders and in rotational systems such as creaking hinges or screeching brakes. Two different types of friction can contribute to stick-slip: static and running friction.

Static Friction

Static Friciton or stiction (‘static’, ‘starting’, or ‘breakout’ friction) is the amount of force required to start an object’s motion along a surface.

This force is greater than that required to sustain the motion – which is the ‘running’ or ‘dynamic’ friction. The difference is bigger if the object has remained still for a long of time and gets stuck.

Running Friction

Running friction has two components: coulombic and viscous drag. Coulombic or ‘dry’ friction is dependent on the direction of motion, and has constant magnitude. Most mechanisms also have some viscous drag that is proportional to velocity.

Why Does Slick-Slip Occur?

The sudden difference between static and running friction causes jerkiness when an object transitions from stationery to movement, and back again.

Stick-slip is not yet completely understood by physicists. It’s generally agreed that stick-slip results from “common phonon modes between surfaces in an undulating potential well landscape primarily influenced by thermal fluctuations.”

However, in practical experience, the causes of stick-slip and uneven motion are well known. From surface compatibility to frictional heat temperature to cycle speed, stick-slip can happen when there is failure or misalignment with any of these factors.

How to Avoid Stick-Slip in Your Seals

Stick-slip in seals can cause softening, swelling, binding, drag, wear, and even failure in a mechanism. Here are the key factors to look out for to avoid stick-slip in your seals:

  • Material hardness, elasticity, friction, and chemical properties: ensure compatibility between surfaces
  • Surface roughness: ensure shafts or cylinders are neither too smooth nor too rough
  • Fluid lubricity: change fluid if necessary, or use oil treatments or friction reducers
  • Contact pressure: lower to the functional optimum
  • Temperature: ensure dissipation of frictional heat
  • Side-loading: check cylinder alignment and ensure adequate bearing area
  • Cycle speed: increase movement velocity if possible

Proper seal selection and design can eliminate or drastically reduce stick-slip. Eclipse has the expertise to fix all seal problems in your mechanisms and find optimum solutions for specific applications. Contact us to discuss your seal problem and get a trouble-free solution.

By Doug Montgomery February 13, 2025
Learn how Eclipse Seal’s custom spring energized ball seats with angled grooves improve performance
By Doug Montgomery January 17, 2025
Eclipse deals regularly with challenging sealing applications from all industries. High pressures and speeds create unique sets of conditions where seal design and material properties are pushed to the limit. While reciprocating applications can certainly test seals to the edge of capability, often times rotary applications can present the greatest challenge to seal integrity and wear life. Unlike reciprocating configurations where the seal is acting on a different part of the shaft or bore throughout it’s operating range, rotary seals must operate on the same sealing area continuously. This makes things like heat rejection much more difficult, especially in unlubricated or dry running applications. Extreme localized heating can have negative affect on both seal and hardware life. Rotary applications also pose sealing difficulties due to the simple fact that surface speeds can be much higher than in reciprocating systems. A simple electric motor can operate at very high rpm, while long stroke, high speed reciprocating machinery is a major piece of equipment that is far less common (though Eclipse also has sealing solutions in a number of these situations). A customer approached Eclipse with an application that was beyond the scope and capability of any standard, off-the-shelf rotary seal. This sealing system would require a combination of both wear resistance in high-speed rotary, as well as excellent leakage control and sealability. Two factors that, more often than not, work in opposition to each other. The Customer Issue The customer was developing a test system that required an electric motor shaft passed through the wall of a large vacuum chamber. The testing apparatus needed a sizable motor to meet the speed and torque requirements. Adapting the motor to operate inside the chamber would not be practical due to contamination and motor cooling concerns. Therefore, the motor would have to be placed outside the chamber and a driveshaft would have to go through the chamber wall. Which, of course, would need a seal. Operating Conditions:
 Rotary Shaft Seal
 Shaft Diameter: 2.5”
 RPM: 7,500 RPM - unlubricated
 Pressure: Vacuum internal side / 1 ATM external side Temperature: 40° - 90°F The customer knew any kind of off-the-shelf rotary seal with a rubber element would not last any amount of time in the combination of speed and a dry running condition. They also knew a single lip PTFE seal would likely not meet their leakage requirements. Therefore, they turned Eclipse for a custom sealing solution.
By Doug Montgomery November 25, 2024
Eclipse has engineered sealing solutions for applications all over the planet and in a plethora of environments. From the bottom of the ocean to orbiting the earth, Eclipse is challenged by the unique conditions in each application. Whether it be extreme temperature and pressure or severely caustic or abrasive media, Eclipse has a solution for most every sealing problem. One distinct environment presents a particularly challenging set of circumstances for seal design – high radiation. Eclipse’s primary seal material choice for many applications is PTFE and PTFE blends. With all the wonderful attributes PTFE possesses as a seal material, radiation resistance is not one. In high radiation environments PTFE’s properties can degrade to essentially rule it out as a suitable material. The options for effective sealing materials that are also radiation resistant becomes very limited. The seal designer is therefore confronted with creating a seal that is expected to perform in every way a typical PTFE seal operates, out of materials that are not as favorable to sealing. This is where Eclipse’s engineering experience and expertise in seal design come to the forefront. The Client's Issue Eclipse was approached by a customer that was looking for a seal solution for a sensor used in a nuclear application. It would be operating in an environment with both high temperature and high Gamma radiation. Operating Conditions:
 Reciprocating Rod Seal
 Rod Diameter: Ø1.000
 Stroke: 1.5”
Cycle Rate: 2-4 cycles per minute
 Media: Air, Salt Water Mist
 Pressure: 100 PSI
 Temperature: 70° to 450°F
 Gamma Radiation Exposure: 10^6 rads
By Doug Montgomery November 14, 2024
Technological advancements in the area of robotics have led to more and more life-like creations existing only in works of science fiction a few decades ago. Development in autonomous logic processing and sensing allows bipedal robots to walk over uneven ground, up and down stairs, open doors and carry loads. Fast response to dynamic and unpredictable real-world environments is critical for the future use of robots in true-life service and practical employment in the years to come. While software and sensor development remain the primary focus of most research, the physical mechanics of next-gen robotics are also continually progressing. Physical components and control systems such as hydraulic pumps and cylinders, servo motors, and structural members are under pressure to continually be lighter, stronger, more efficient and less expensive. Increased demands on the physical components facilitate the need for innovative solutions in design and material usage. Advancements in construction and technology have spilled into all areas of robotic mechanisms and the many seals located throughout the system need to meet the challenges of tomorrow. Eclipse has been at the forefront of this research and has developed innovative solutions pushing the boundaries of conventional sealing devices. MicroLip™ by Eclipse is a prime example of most demanding applications forging new technologies in the sealing world. The Client's Issue Eclipse was approached by a leading robotics company looking for a sealing solution operating under a challenging set of conditions. While many components of tomorrow’s robotics are now controlled and actuated by servo/stepper motors and various electronic devices, the heaviest and most powerful movements are still driven by traditional hydraulics. The constant demand for more powerful hydraulic actuation in ever deceasing size and weight requirements has put tremendous strain on component design. But if robots are to progress to the point where they are usefully employed in the world, high power in a compact design is necessary. A robot, for example, used to survey and assist in a disaster zone too unstable for normal rescuers, must fit through doorways and over obstacles yet still be physically strong enough to render assistance. Large hydraulic systems are capable of moving extremely heavy loads but size and weight constraints of a humanoid size robot limit potential. The robot’s internal power supply to drive all components is also a limiting factor. Our client was developing a new hydraulic pump to drive all major motion aspects of their robotic systems. Their main objective was to minimize the pump’s physical size as much as possible while increasing output and improving power consumption efficiency. This means higher pressures and speeds on increasingly smaller and lighter components. Application Parameters: Shaft Diameter: Ø9.5mm Seal Housing Envelope: 5mm radial cross-section by 6mm axial width Rotational Speed: 3,500 RPM nominally; 6,000 RPM max Operating Pressure: 125 PSI min, 225 PSI nominal, 350 PSI max Surface Finish: 0.04µm Media: Hydraulic Oil While the above combination of pressure and speed might present difficulties for any conventional seal alone, the client’s extremely small physical envelope to house the seal further complicated the matter. If that wasn’t enough, the application presented the additional sealing challenge of up to 0.003” [0.08mm] of shaft runout. As part of the downsizing of all components in the pump, shaft support bearings were minimized leading to the possibility of runout. The wobbling effect of the shaft creates problems as the sealing lip has follow a moving, uneven mating surface, therefore potential leak-paths are created. Wear life can also be compromised due to higher concentrations of uneven loads. The combination of high pressure, high speed, high runout and minimal gland size present a worst-case scenario for a typical seal. Unsurprisingly, the client faced leakage of hydraulic fluid after only short periods of service with any conventional seal they had tested. Eclipse knew the had the perfect solution for this application. One developed to handle such extreme rotary sealing conditions: MicroLip™.
Share by: