Blog Layout

The Right Fillers for Optimum PTFE Performance

Cliff • Jun 07, 2017

Polytetrafluoroethylene (PTFE) resin is a highly effective material for seal consumers due to its extremely low friction, high heat tolerance and chemical inertness.

With the right additives, PTFE resin can perform even better in terms of strength, thermal performance, chemical resistance and abrasion.

However, there are a few design considerations when using PTFE resin, particularly when combined with glass fiber and bronze.

A Quick Intro to PTFE: A Breakthrough Material

A common household form of PTFE is Teflon, which you’ll recognize as the slippery plastic used in non-stick frypans.

PTFE was discovered in the 1930s as an accidental byproduct in chlorofluorocarbon refrigerant production. It’s a synthetic compound consisting wholly of carbon and fluorine — a fluorocarbon.

PTFE is hydrophobic, so doesn’t get wet due to the high electronegativity of fluorine. It’s also chemically non-reactive, mainly because of the ‘independent’ strength of the carbon–fluorine bonds. This suits the resin well for reactive and corrosive chemical environments.

Where it is used as a lubricant or seal, PTFE has the huge benefits of reducing friction, wear and energy consumption of machinery.

Making a Great Material Even Better

After extensive experimentation and time-tested performance, the following additives/fillers have come to be strategically used to enhance PTFE performance:

Glass Fiber (typically 5–40%)

Improvements:

  • Creep resistance
  • Compressive strength
  • Pressure tolerance
  • Chemical compatibility/inertness (except for strong alkalis and hydrofluoric acid)
  • Wear resistance and durability
  • Similar friction to virgin PTFE

There are a couple of cons to glass fiber, including abrasion on mating parts and discoloration of finished parts.

Ideal for:

  • Piston rings
  • Backup rings

Molybdenum Disulfide (MoS2) (typically low %)

Improvements:

  • Hardness and stiffness
  • Friction
  • Lubrication
  • Wear resistance
  • Chemically unreactive (except with oxidizing acids)
  • Best when combined with glass and bronze

Ideal for:

  • Dynamic seals

Carbon powder (typically 5–15%)

Improvements:

  • Hardness
  • Compressive strength
  • Deformation resistance
  • Thermal conductivity
  • Permeability
  • Abrasion reduction
  • Wear resistance and reduced friction when combined with graphite
  • Antistatic (electrically conductive)

Ideal for:

  • Rotary seals
  • Sliding applications
  • Piston rings (with graphite)

Carbon Fiber

Improvements:

  • Creep resistance
  • Chemical inertness
  • Lightness
  • Wear resistance
  • Abrasion reduction

Ideal for:

  • Bearings
  • Seal rings e.g. water pumps and shock absorbers

Graphite (typically 5–15%)

Improvements:

  • Friction
  • Lubricity
  • Wear resistance
  • Reduced wear against soft metals
  • High load-carrying capability in high-speed contact applications
  • Chemically inert
  • Great combined with glass and carbon

Ideal for:

  • Pumps

Bronze (typically 40–60%)

Improvements:

  • Wear resistance
  • Thermal conductivity
  • Creep resistance
  • Pressure tolerance

Disadvantages:

  • Chemical reaction
  • Oxidizes

Ideal for:

  • Hydraulic systems
  • Master cylinders
  • Drug manufacture seals
  • Not for electrical or corrosive applications

Pigments

Improvements:

  • Color coding of seals
  • No performance change to pure PTFE

Put to Profitable Use

PTFE seals , with their exceptional performance, are used for a myriad of applications, including:

  • Motors
  • Gearboxes
  • Pumps
  • Bearings
  • Compressors
  • Extruders
  • Valves
  • Blowers
  • Spindles
  • Mixers
Seal Terminology 101
By Doug 03 Oct, 2022
While the average person can probably recognize a rubber O-Ring, knowledge of advanced sealing devices remains a largely obscure field of knowledge. Eclipse is here to be the subject matter experts and guide you to the best sealing solution, but being familiar with some basic seal terminology will aid us in the process. The ability […]
Sealing 15,000 PSI at 300°F With a Large Extrusion Gap
By Doug 10 Aug, 2022
Eclipse serves dozens of industries and provides sealing solutions for applications on, off, and below the surface of the planet.  Each application has its own set of challenges whether it be manned space flight, surgical medical instruments, or high-volume automotive components. One industry that continually presents Eclipse with challenging sealing conditions is oil and gas. […]
Fillers That Improve PTFE’s Performance
By Doug 30 Jun, 2022
PTFE was discovered in the 1930s as an accidental byproduct of chlorofluorocarbon refrigerant production. It’s a synthetic compound consisting wholly of carbon and fluorine — a fluorocarbon. Its many unique properties make it highly attractive as a seal material. It possesses one of the lowest friction coefficients of any known material, is nearly 100% chemically […]
Cantilever V-Spring
By Doug 19 Apr, 2022
Shortly after the discovery and use of PTFE as a seal material, the need for a secondary energizing method became apparent.  Unlike rubber or urethane which possess elastic and spring-like properties, PTFE will not return to its original state once deformed. This is obviously not a desirable trait for sealing material, especially in dynamic sealing […]
Share by: